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9.3 The Integral Test and p-Series

Use the Integral Test to determine whether an infinite series converges or diverges.
Use properties of -series and harmonic series.

The Integral Test
In this and the next section, you will study several convergence tests that apply to series
with positive terms.

Proof Begin by partitioning the interval into unit intervals, as shown
in Figure 9.8. The total areas of the inscribed rectangles and the circumscribed
rectangles are

Inscribed area

and

Circumscribed area

The exact area under the graph of from to lies between the inscribed and
circumscribed areas.

Using the partial sum, you can write this
inequality as

Now, assuming that converges to it follows that for 

Consequently, is bounded and monotonic, and by Theorem 9.5 it converges. So,
converges. For the other direction of the proof, assume that the improper integral

diverges. Then approaches infinity as and the inequality
implies that diverges. So, diverges.

See LarsonCalculus.com for Bruce Edwards’s video of this proof.

Remember that the convergence or divergence of is not affected by deleting
the first terms. Similarly, when the conditions for the Integral Test are satisfied for all

you can simply use the integral to test for convergence or 
divergence. (This is illustrated in Example 4.)

��
N  f �x� dxx � N > 1,

N
� an

� an�Sn�Sn�1 � �n
1  f �x� dx

n →�,�n
1 f �x� dx

� an

�Sn�

Sn � L � f �1�.Sn � f �1� � L

n � 1L,��
1 f �x� dx

Sn � f �1� � �n

1
 f �x� dx � Sn�1.

Sn � f �1� � f �2� � .  .  . � f �n�,nth

�
n

i�2
 f �i� � �n

1
 f �x� dx � �

n�1

i�1
 f �i�

x � nx � 1f

�
n�1

i�1
 f �i� � f �1� � f �2� � .  .  . � f �n � 1�.

�
n

i�2
 f �i� � f �2� � f �3� � .  .  . � f �n�

�n � 1�	1, n


p

THEOREM 9.10 The Integral Test

If is positive, continuous, and decreasing for and then

and

either both converge or both diverge.
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Figure 9.8
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Using the Integral Test

Apply the Integral Test to the series 

Solution The function is positive and continuous for To
determine whether is decreasing, find the derivative.

So, for and it follows that satisfies the conditions for the Integral Test.
You can integrate to obtain

So, the series diverges.

Using the Integral Test

See LarsonCalculus.com for an interactive version of this type of example.

Apply the Integral Test to the series 

Solution Because satisfies the conditions for the Integral Test
(check this), you can integrate to obtain

So, the series converges (see Figure 9.9).

In Example 2, the fact that the improper integral converges to does not imply
that the infinite series converges to To approximate the sum of the series, you can
use the inequality

(See Exercise 54.) The larger the value of the better the approximation. For instance,
using produces 1.072 � � 1��n2 � 1� � 1.077.N � 200
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Because the improper integral 
converges, the infinite series also 
converges.
Figure 9.9
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-Series and Harmonic Series
In the remainder of this section, you will investigate a second type of series that has a
simple arithmetic test for convergence or divergence. A series of the form

-series

is a p-series, where is a positive constant. For the series

Harmonic series

is the harmonic series. A general harmonic series is of the form In
music, strings of the same material, diameter, and tension, and whose lengths form a
harmonic series, produce harmonic tones.

The Integral Test is convenient for establishing the convergence or divergence of
series. This is shown in the proof of Theorem 9.11.

Proof The proof follows from the Integral Test and from Theorem 8.5, which states
that

converges for and diverges for 
See LarsonCalculus.com for Bruce Edwards’s video of this proof.

Convergent and Divergent -Series

Discuss the convergence or divergence of (a) the harmonic series and (b) the series
with 

Solution

a. From Theorem 9.11, it follows that the harmonic series

diverges.

b. From Theorem 9.11, it follows that the series

converges.
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THEOREM 9.11 Convergence of -Series

The -series

converges for and diverges for 0 < p � 1.p > 1,

�
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HARMONIC SERIES

Pythagoras and his students 
paid close attention to the 
development of music as an
abstract science.This led to the
discovery of the relationship
between the tone and the length
of a vibrating string. It was
observed that the most beautiful
musical harmonies corresponded
to the simplest ratios of whole
numbers. Later mathematicians
developed this idea into the 
harmonic series, where the terms
in the harmonic series correspond
to the nodes on a vibrating string
that produce multiples of the 
fundamental frequency. For example,

is twice the fundamental
frequency, is three times the 
fundamental frequency, and so on.

1
3

1
2
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The sum of the series in Example 3(b) can be shown to be (This was proved
by Leonhard Euler, but the proof is too difficult to present here.) Be sure you see that
the Integral Test does not tell you that the sum of the series is equal to the value of the
integral. For instance, the sum of the series in Example 3(b) is 

whereas the value of the corresponding improper integral is

Testing a Series for Convergence

Determine whether the series

converges or diverges.

Solution This series is similar to the divergent harmonic series. If its terms were 
greater than those of the harmonic series, you would expect it to diverge. However,
because its terms are less than those of the harmonic series, you are not sure what to
expect. The function

is positive and continuous for To determine whether is decreasing, first rewrite
as

and then find its derivative.

So, for and it follows that satisfies the conditions for the Integral Test.

The series diverges.

Note that the infinite series in Example 4 diverges very slowly. For instance, as
shown in the table, the sum of the first 10 terms is approximately 1.6878196, whereas
the sum of the first 100 terms is just slightly greater: 2.3250871. In fact, the sum of the
first 10,000 terms is approximately 3.0150217. You can see that although the infinite
series “adds up to infinity,” it does so very slowly.
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n 11 101 1001 10,001 100,001

Sn 1.6878 2.3251 2.7275 3.0150 3.2382
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9.3 The Integral Test and p-Series 609

9.3 Exercises See CalcChat.com for tutorial help and worked-out solutions to odd-numbered exercises.

Using the Integral Test In Exercises 1–22, confirm that the
Integral Test can be applied to the series. Then use the Integral
Test to determine the convergence or divergence of the series.

1. 2.

3. 4.

5. 6.

7.

8.

9.

10.

11.

12.

13. 14.

15. 16.

17. 18.

19. 20.

21. 22.

Using the Integral Test In Exercises 23 and 24, use the
Integral Test to determine the convergence or divergence of the
series, where is a positive integer.

23. 24.

Requirements of the Integral Test In Exercises 25–28,
explain why the Integral Test does not apply to the series.

25. 26.

27. 28.

Using the Integral Test In Exercises 29–32, use the
Integral Test to determine the convergence or divergence of the
-series.

29. 30.

31. 32.

Using a p-Series In Exercises 33–38, use Theorem 9.11 to
determine the convergence or divergence of the -series.

33. 34.

35.

36.

37.

38.

39. Numerical and Graphical Analysis Use a graphing
utility to find the indicated partial sum and complete the
table. Then use a graphing utility to graph the first 10 terms of
the sequence of partial sums. For each series, compare the rate
at which the sequence of partial sums approaches the sum of
the series.

(a) (b)

40. Numerical Reasoning Because the harmonic series
diverges, it follows that for any positive real number there
exists a positive integer such that the partial sum

(a) Use a graphing utility to complete the table.

(b) As the real number increases in equal increments, does
the number increase in equal increments? Explain.N
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610 Chapter 9 Infinite Series

Finding Values In Exercises 47–52, find the positive values
of for which the series converges.

47. 48.

49. 50.

51. 52.

53. Proof Let be a positive, continuous, and decreasing 
function for such that Prove that if the series

converges to then the remainder is bounded by

54. Using a Remainder Show that the result of Exercise 53
can be written as

Approximating a Sum In Exercises 55–60, use the result
of Exercise 53 to approximate the sum of the convergent series
using the indicated number of terms. Include an estimate of the
maximum error for your approximation.

55. five terms 56. six terms

57. ten terms

58. ten terms

59. four terms

60. four terms

Finding a Value In Exercises 61–64, use the result of
Exercise 53 to find such that for the convergent
series.

61. 62.

63. 64.

65. Comparing Series

(a) Show that converges and diverges.

(b) Compare the first five terms of each series in part (a).

(c) Find such that 

66. Using a p-Series Ten terms are used to approximate a
convergent series. Therefore, the remainder is a function of

and is

(a) Perform the integration in the inequality.

(b) Use a graphing utility to represent the inequality graphically.

(c) Identify any asymptotes of the error function and interpret
their meaning.
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WRITING ABOUT CONCEPTS
41. Integral Test State the Integral Test and give an example

of its use.

42. p-Series Define a series and state the requirements
for its convergence.

43. Using a Series A friend in your calculus class tells
you that the following series converges because the terms
are very small and approach 0 rapidly. Is your friend 
correct? Explain.

44. Using a Function Let be a positive, continuous, and
decreasing function for such that Use a
graph to rank the following quantities in decreasing order.
Explain your reasoning.

(a) (b) (c)

45. Using a Series Use a graph to show that the inequality
is true. What can you conclude about the convergence or
divergence of the series? Explain.
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46. HOW DO YOU SEE IT? The graphs show the
sequences of partial sums of the -series

and

Using Theorem 9.11, the first series diverges and
the second series converges. Explain how the
graphs show this.
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9.3 The Integral Test and p-Series 611

67. Euler’s Constant Let

(a) Show that 

(b) Show that the sequence is bounded.

(c) Show that the sequence is decreasing.

(d) Show that converges to a limit (called Euler’s 
constant).

(e) Approximate using 

68. Finding a Sum Find the sum of the series

69. Using a Series Consider the series 

(a) Determine the convergence or divergence of the series for

(b) Determine the convergence or divergence of the series for

(c) Find the positive values of for which the series converges.

70. Riemann Zeta Function The Riemann zeta function
for real numbers is defined for all for which the series

converges. Find the domain of the function.

Review In Exercises 71–82, determine the convergence or
divergence of the series.
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79. 80.
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The harmonic series

is one of the most important series in this chapter. Even though its
terms tend to zero as increases,

the harmonic series diverges. In other words, even though the terms
are getting smaller and smaller, the sum “adds up to infinity.”

(a) One way to show that the harmonic series diverges is attributed
to James Bernoulli. He grouped the terms of the harmonic
series as follows:

Write a short paragraph explaining how you can use this
grouping to show that the harmonic series diverges.

(b) Use the proof of the Integral Test, Theorem 9.10, to show that

(c) Use part (b) to determine how many terms you would need
so that

(d) Show that the sum of the first million terms of the harmonic
series is less than 15.

(e) Show that the following inequalities are valid.

(f ) Use the inequalities in part (e) to find the limit
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